이 게시글은 K-mooc 고영채교수님의 이동통신공학 1을 수강한 내용을 바탕으로 작성하였음
Path
Wireless Channel Model

지난 강의에서는 fading의 종류를 Large, small로 분류하였다. Large scale fading은 Average power에 대한 channel model이며, small scale은 Instantaneous power에 대한 channel model이다.
각각에 대해 다시 짚고 넘어가면
- Path loss : distance에 따라 power가 얼마나 감쇠할 것인가
- Shadowing : 왜 distance가 같을때도 power 감쇠가 발생하는가
- Frequency flat fading : 한정된 BW 영역에 같은 영향을 미친다.
- Frequency flat fading : BW에 따라 다른 영향을 미친다.
- Coherence time : Channel에 따라 Power가 변하지 않는 time 구간
여기서는 Large scale fading중 Path loss에 대해서 알아본다. Path loss는 Tx와 Rx 간 distance에 따라 Received power가 얼마나 감쇠하는지에 대한 관계를 의미한다.
Path loss in General Case

앞선 강의에서는 Received power
Path loss exponent
Received Signal Power in Distance

: Tx antenna의 gain- : Rx antenna의 gain
- : Transmit power
: receiver에서 발생하는 loss (수신기의 modem에서 발생하는 loss) : wave length
dB and dBm
watt, joule/sec는 실제 단위이지만 dB, dBm은 실제 단위가 아니다. dB, dBm은 어떤 ratio을 나타내기 위한 상대적인 값으로써 실제 unit은 존재하지 않는다.
예를 들어 input power
이때 gain
Power in dB and dBm

Power를 dB단위로 나타낸다는 것은
Power
Power의 단위를 없앨 때
만약
위에서 본 바와 같이 dB, dBm은 정의상 단위가 아니며 각각
(뒤에서 나오지만 혼동을 줄이기 위해 미리 쓰자면 어느 power의 dB 표현을 위해
Example
- 20 dBm을
로 바꾸면 → - 3 dB를
로 바꾸면 → 이므로

열 잡음은 실험적, 이론적으로 모든 BW 영역에서 1Hz당 -174dBm의 power를 가지고 있다.
Sum of Decibels

위 식에서
dB는 unit이 없음에도 불구하고 Power라는 특수한 경우를 나타내기 위해 dBW라는 단위를 사용하는 것이다.
Remark

- Power는 dB, dBm으로 측정되는 것이 아니라, dB, dBm을 이용하여 표현하는 것이다. (dB는 단위가 아니라 표현 수단이다.)
- dBW는 이미 dB에
라는 power단위를 포함하고 있다. 즉, dBW는 단위가 존재하므로 dBW에 dBW를 더할 수는 없다. → 세 개의 dBW를 더하면 가 나온다. - dBm역시
에서의 표현이므로 마찬가지다.

즉,
정리하면
- dB = 10log10(⋅)
- dBW =
- dBm =
dB는 그냥 어떤 수에 log연산만 취했을 뿐이다. 따라서 dB값을 dB, dBW, dBm에 더하고 빼도 전혀 문제가 되지 않는다. 그저 log안에서 곱셈이 이루어지기 때문.
dBW과 dBm은 원본 값 (⋅)을 Watt단위로 한 번 나눈 후 log를 취한 것이다. 따라서 dBW 값 두 개를 더하면 분모에 Watt가 두 번 곱해져버린다. dBm도 마찬가지.
동일한 이유로 dBW과 dBm을 더하면 분모에
이렇듯 dBW과 dBm은 단위 안에 이미 W와 mW를 log 안에 포함하고 있기 때문에 dBW, dBm과 연산이 이루어질 수 없다. 연산을 위해서는 W, mW단위에서 연산을 마친 후 dBW으로 변환해야 한다.

실제 Path loss를 계산할 때 모든 지역, 상황에서의 path loss를 계산하는 것은 어렵다. 따라서 Transmit power
Two-Ray Path Loss Model
Signals with Path Loss

Channel에 bit를 전송할 때, 이 bit를 analog pulse

Tx와 Rx가
Received power
Received signal
여기서
이를
이때 Transmit power와 Received power의 ratio
Free-Space Path Loss Model
따라서 loss power
Two Ray Model

Free space가 아닌 경우 즉, 전파 경로상에 장애물이 존재하는 경우에 loss를 어떻게 구하는지 알아본다.
Tx antenna의 높이가
<LOS>
Tx antenna gain :
Rx antenna gain :
path :
<1st Non LOS>
Tx antenna gain :
Rx antenna gain :
path :
1st Non LOS 성분이 지면과 이루는 각도
→ Signal이 안테나에서 전파, 수신되는 방향과 각도에 따라 얻어지는 antenna gain이 다르다
먼저 결론부터 보면, 위 모든 요소들을 고려했을 때 Received power
이 식에 따라 Received power는 Transmit power의 거리 네제곱 만큼 감소한다.
이처럼 LOS와 한 번 부딪혀서 오는 Non-LOS를 함께 고려하는 path loss를 two-ray path loss model이라고 부르는데 실제로 이 모델이 많은 경우에 상당히 정확하게 작동하므로, 이 모델을 자주 사용한다.

Non-LOS 성분이 땅에 부딪히면서 wave가 땅에 어느정도 흡수되는데, 이를 유전율

위에서 본

위 식에 의하여 최종적으로 Received power

어떤 Wireless system에 대한 modeling을 할 때 Transmit power와 Received power에 대한 관계를 path loss로 정의할 때 two-ray path loss를 사용하여 received power는 거리의 4제곱으로 감소한다고 말할 수 있다.
이때 modeling을 위해 고려해야 할 것은 Tx antenna와 Rx antenna의 높이이다. (둘 다 높이가 높을수록 Received power가 높다. 따라서 BS는 빌딩정도의 높이에 있어야 한다. 산에 있는 경우도 많다.)
Some other path loss mode
two-ray path loss model은 아주 간단하면서도 어느정도 정확한 path loss model이다. 실제 system에서는 도시환경을 직접 측정하여 path loss model을 정하는 방식으로 진행된다.
3G, 4G system의 표준화를 보면 path loss에 대한 규정이 이미 정해져있는데, 이들은 대부분 신호를 실제 전송하고 어떤 거리에서 power를 측정했을 때 나오는 실제 관측값을 기준으로 path loss 모델을 확률적으로 정의한다.
Cellular system 외에도 다양한 system에서 path loss를 정의하고 있으므로, 실제 사용되는 여러가지 path loss model에 대해서 공부해본다.
Empirical Path Loss Model
언급한 바와 같이 two-ray 모델 이외에도 공장, 도서관, 카페, 오피스 등에서 실제 측정을 바탕으로 만들어진 path loss model들이 존재한다.
- Okumura model
- Hata model
- Cost 231 Entension to Hata model (Hata model을 확장한 것)
- Piecewise linear (multi-slope) model
Okumura Model

Okumura model을 약간 설명해보면 다음과 같다.
Free space path loss

Okumura model에서는 Mobile (Rx) antenna의 높이에 따른 이득
Hata Model

Hata model을 Urban에서 사용하였을 때 Path loss는 위처럼 정의된다.

Suburban과 rural에서는 위처럼 다르게 정의된다.
Cost 231 Extensiotn to Hata Model

Hata model을 확장하여 유럽에서 사용하는 Cost model의 경우 Path loss model은 위처럼 정의된다.
Piecewise Linear (Multi-slope) Model

위에서 본 세가지 model은 empirical (실제로 측정하여 얻은) model이다. 반면 논문에서 사용하거나 혹은 simulation을 위해 사용하는 path loss도 존재하는데, 이것이 바로 Piecewise linear model이다.
이 model은 path loss의 지수값
Simplified Path Loss Model

가장 simplified 된 model은 다음처럼 구성된다. 상수

Simplified model을 사용하는 경우 여러 장소에서 이미 측정된 loss exponent
실제 통신에서 위 model들을 적용할 때는 먼저 empirical한 값들을 측정으로 얻어야하며, 그 값들을 여러 path loss model에 적용해본 후 실제 channel 상황에 가장 근접한 것을 채택한다.
Shadowing

Channel modeling을 할 때 path loss만을 고려한다면 Tx로부터 떨어진 거리가 같은 두 Rx의 Average power는 반드시 같아야 한다. 하지만 distance가 같은 Rx에서 received power는 서로 다르며, 그 차이는
또한, 그 difference

위는 Tx 기지국에서 떨어진 거리가
위 상황은 path loss 식에 의해서 계산을 했을 때 Received power가 16 dBm이 도출된 상황이다.
이때
배운 내용 정리
- Free space path loss : distance의 제곱에 따라 power가 감소한다.
- Two-ray model : 2개의 경로를 고려하며, distance의 4제곱에 따라 power가 감소한다. (Two-ray 유도식을 확장하여 three, four 혹은 더 높은 차수의 다중-ray model을 얻을 수 있다.)
- Shadowing : Tx로부터 같은 거리에 떨어져있는 Rx간 Received power가 일정하지 않다. 또한 그 차이를
이라고 하는데, epsilon값은 의 gaussian distribution을 따른다.
Received Signal Power in Shadowing

Shadowing을 고려하는 경우 위처럼 path loss만 고려한 식에 shadowing factor
이때
→ Tx로부터의 거리가 같은 여러 Rx에서 Received power가 5~12dB 차이가 날 수 있다는 것이다.
즉, Tx로부터 거리가 같은 곳에서도 Received average power가 다른 현상 Shadowing은 Random variable로 modeling된다. 그 RV

Area Mean, Local Mean, and Shadowing

예를 들어 위 같은 환경이 있다고 가정하자. 이때 각 Rx는
이때

Area mean : path loss만 고려해서 계산한 Average power
Local mean : path loss에 shadowing factor를 더한 최종 loss
→ Local mean은 Large scale fading을 전부 고려한 Received power이다.
Probability Density Function of Local Mean

Path loss와 Shadowing을 모두 고려한 Received signal
이때
PDF of Local Mean in Linear Scale

Gaussian distribution에 상수 덧셈, 적분, 미분 등의 linear operation을 취해도 gaussian distribution은 변하지 않는다. 하지만 non-linear operation을 취하는 경우에는 Gaussian의 특성이 바뀌게 된다.
Path loss에 shadowing을 고려한 local mean은 dBm 단위에서 gaussian 분포를 따르는데, dBm을 watt단위로 변형시키기 위해서는
dBm 단위에서
이때
그 결과로 얻어진 Watt단위의 PDF는 위 그림에서의 식과 같다.
4G LTE Path Loss Model

실제 4G-LTE에서 사용되는 Path loss는 위와 같다. Outdoor to indoor과 Outdoor to outdoor에서 서로 다르게 정의되는 것을 확인할 수 있다.
Shadowing standard deviation은 상당히 큰 값 10으로 설정되어 있다. 즉, 대략 70% 확률로 local mean 값이 평균으로부터 10dB 차이날 수 있으며, 20% 확률로 20dB 차이날 수 있다는 것을 의미한다.
'이동통신공학' 카테고리의 다른 글
2. Cellular system and Introduction to Channel model (0) | 2023.09.08 |
---|---|
1. Introduction, Spectral & power efficiency, Cellular concept (0) | 2023.09.03 |